
A Test Engineer’s Evaluation
of Graphical Programming

By Steve Mackin, Endgate Corporation

Steve Mackin is currently a senior project engineer with Endgate
Corporation in Sunnyvale, California. Steve was with Allied
Signal Aerospace (formerly Garrett) for 13 years as an
aerodynamic engineer responsible for the aerodynamic design and
test of fans and compressors for propulsive jet engines. He holds
a B.S. in Mechanical Engineering from Iowa State.

Steve is a member of the HP VEE electronic users group and can be
reached at smackin@endgate.com. Visit the Endgate Corporation home
page at http://www.endgate.com.

A Test Engineer’s Evaluation of Graphical Programming
By Steve Mackin, Endgate Corporation

Page 2

Introduction

The development of graphical programming has
dramatically changed the way that test and
measurement software is written today.
Graphical programming has made it possible to
create reliable software faster than ever before
and two major suppliers have emerged as
leaders in graphical programming software.
This article will seek to compare traditional
programming to graphical, explore basic
programming elements of HP VEE and National
Instruments LabVIEW, explain their differences
and, through an example program, demonstrate
their differences. This article will compare basic
programming elements only, not advanced
libraries or instrument control drivers.

Traditional Programming vs. Graphical
Programming

Traditional Programming
Traditional programming languages are text
based. Lines of code are created utilizing
keywords and syntax rules.

The process for creating a program is shown in
the figure at the right (figure 1).

The process outlined above is very iterative.
Some of the new development environments help
programmers by checking some aspects of syntax
during editing, providing buttons to compile, link
and execute the code, and positioning the cursor
of the editor at the location of compile and link
errors. While this is very helpful it is still too
easy to create code that compiles, links, and
executes but does not produce the desired result.

Programming with traditional languages is
difficult because the programmer has to manage
the execution and data flow using keywords,
syntax, variable names, and data structures.
Variable names are assigned by the programmer
and need to be typed into the code in numerous
places. It is relatively easy to mistype the
variable name, use the wrong variable name, or
use the right name in the wrong place.

The debug environment was created to allow
programmers to view the execution and data
flow. The debug environment can show what is
wrong but it cannot eliminate the root cause of
the problem. While creating a program the

Create a text file or a series
of text files called the
source code using

keywords and syntax.

Finish.

Examine code
for errors or
enter debug
environment.

Does the code
produce the desired

result?

Did the
compiled code link

successfully?

Did the
source code compile

successfully?

Invoke a compiler to
convert the source into a

format understood by
the computer.

Invoke a linker to link
modules of the compiled
code to each other and to

standard run-time
libraries.

Execute the code.

Yes

No

No

No

Yes

Yes

Figure 1

A Test Engineer’s Evaluation of Graphical Programming
By Steve Mackin, Endgate Corporation

Page 3

programmer encrypts the execution and data
flow. To derive the execution flow by just looking
at source code can be very difficult even for the
author. That is why it is called code!

Graphical Programming
Graphical programming is vastly different from
traditional programming because the data flow
and execution flow are managed graphically. A
diagram is created using objects and lines. The
lines primarily represent data and the objects
create, analyze, or display the data. Execution
flow typically follows the data flow. When
execution flow cannot follow the data flow the
execution flow is still managed graphically. A
graphical program is easy for the author or
anyone else to decipher and easy to support.

The process for creating a graphical program is
shown in the figure to the right (figure 2).

As you can see the program creation process is
relatively simple. Because objects are selected
from pull down menus it is possible to leverage
reliable, consistent (execution, user interface, and
display), and useful code. Most of the objects
utilized would require hundreds or even
thousands of lines of traditional code. Execution
and data flow are clearly represented in the
diagram created that represents the program.
There are fewer opportunities for human error
and problems are easier to locate. The finished
code is easily interpreted by both the author and
other programmers.

Create or edit a program by
placing objects on the screen

in execution order. These
objects are selected from pull

down or pop up menus.

Finish.

Examine the diagram
for errors. Replace or
add objects. Edit data

lines or modify
execution flow.

Does the code
produce the desired

result?

Use the mouse to create
data lines between objects by
connecting object input pins

to object output pins.

No

Yes
Figure 2

Visually ensure that the
execution flow is correct.

Hit the Run button to
execute the code.

A Test Engineer’s Evaluation of Graphical Programming
By Steve Mackin, Endgate Corporation

Page 4

LabVIEW vs. HP VEE

LabVIEW from National Instruments and VEE;
from Hewlett Packard are the two major
graphical programming languages in use today.
While they perform similar functions they use
significantly different methods. Both have
significant strong points as well as drawbacks.

Basic Components
Primitive objects are objects, which create,
analyze, or display data. These objects are
selected from pull down or pop up menus. They
can be assembled and linked with lines creating
graphical programs, which can be made into
functions. Functions in LabVIEW are called VI’s
(vee-eyes not sixes) and functions in HP VEE are
called User Functions. A pin is a point on an
object which indicates that a connection may be
made at that location. Most objects contain at
least one pin and there are significant differences
in the way pins are handled in LabVIEW and HP
VEE. Lines represent data and can either be
inputs to the object or outputs from the object.
Lines can also be used to sequence the execution
of objects in both LabVIEW and HP VEE. The
color and style of lines indicate the type of data
represented by the lines. LabVIEW and HP VEE
have many data types and styles in common but
each also employs unique data types and styles.
The utilization of data types and styles in
graphical programming is a very complex subject
and beyond the scope of this article but some
basic differences will be described.

Object Comparison
1. LabVIEW objects are very graphical
compared to HP VEE objects. They use shapes,
colors, and text to convey lots of information. All
LabVIEW objects have labels and the
programmer can type in a meaningful label. HP
VEE objects are always rectangular and they
also have labels which the programmer can use
to describe what the object does. A HP VEE
programmer can color objects and utilize bitmaps
if he or she wants to alter the appearance of
objects.

2. All HP VEE objects can be resized with no
impact on the execution and data flow. Most
LabVIEW objects cannot be resized and the ones
that can be resized can only be resized by
creating more pins, which changes the program.
All LabVIEW VI’s are the same size so there is a
limit to the number of pins, which will fit on an
object. This may seem like a purely cosmetic
concern but re-sizing objects can really enhance
the readability of a graphical program (See the
example program comparison at the end of this
article).

3. HP VEE objects have two views (open and
closed). Most HP VEE objects will allow the
programmer to type data into the object to
control the action of that object. Most LabVIEW
objects require that data be wired into the object
from other objects. The example below
illustrates how information can be typed into the
open view of a HP VEE object and the same
information must be wired into a LabVIEW
object.

A Test Engineer’s Evaluation of Graphical Programming
By Steve Mackin, Endgate Corporation

Page 5

Pin Comparison
1. HP VEE objects have sequence pins: One pin
on the top of the object and one on the bottom.
These pins are used to sequence execution flow
and are typically used only if the execution flow
of the program cannot follow the data flow or if
there is no data flow available for sequencing.
LabVIEW objects do not have sequence pins.
Objects are sequenced by data flow and if data
flow cannot be used a multi-layer window
scheme is required.

2. All HP VEE object input pins are on the left
side of the object and all output pins are on the
right side of the object. This makes HP VEE
code easy to interpret. Input and output pins on
LabVIEW objects can be anywhere (see file
dialog object above).

3. LabVIEW pins are color-coded with the data
type required and the pins do not typically
convert the data type. HP VEE objects are not
color-coded and data type conversion is typically
automatic following certain rules. HP VEE
programmers rarely need to be concerned with
data typing because the rules HP VEE uses for
conversion are very convenient. However, should
the need arise, the rules can be overridden.

4. HP VEE uses data input pins to control
attributes of control and indicator objects. These
input pins do not influence data or execution
flow. To indicate this the wires connected to
these pins are dashed. To control attributes of
control and indicator objects in LabVIEW,
attribute nodes are created using a pull-down
menu on the object. These attribute nodes can be
placed anywhere in the program and are often
duplicated in numerous places. This makes
interpreting the program difficult. On the other
hand, the number of attributes a programmer
can control on LabVIEW controls and indicators
is much greater than the number of attributes a
programmer can control on HP VEE controls and
indicators.

5. There is a method in LabVIEW to create an
object(s) that represents the output or input pins
of control or indicator objects (Local Variables).
These objects can then be placed anywhere in the
program. Input to an indicator object can
physically be wired in one part of a program and
indirectly wired in another. Doing this creates a
whole new dimension for the data to flow.
Instead of flowing on wires from left to right the
data may enter the object from another location.
This, of course, makes interpreting the program
difficult. Local variables are mostly used to
extract data from a control without using a wire.
Essentially the data dives into the screen to
resurface where it’s needed. This can be
accomplished in HP VEE using global variables.
Set global and get global objects are used. The
name of the global variable is typed into the open
view of the set global object (it can also be sent in
on a line). Get global objects can then placed into
the program at the desired resurfacing point.

Line Comparison
1. Both HP VEE and LabVIEW now have
colored textured lines. The color represents the
data type and the texture represents the shape.

2. Line routing in HP VEE is automatic both
before and after lines are connected. Line
routing in LabVIEW is manual before the objects
is wired and automatic after the object is wired.
LabVIEW’s automatic line routing is virtually
useless if the object is moved very far. Manual
line routing in LabVIEW is a skill that needs to
be learned. It is very easy to create LabVIEW
programs that are difficult to interpret simply
because of poor line routing.

Figure 3
VEE File Dialog Object

LabVIEW File Dialog Object

A Test Engineer’s Evaluation of Graphical Programming
By Steve Mackin, Endgate Corporation

Page 6

Data Types and Shapes Comparison

1. LabVIEW data types and shapes are very
similar to traditional programming language
data types and shapes. HP VEE data types and
shapes are more specific to the test and
measurement field. For instance HP VEE has a
Waveform data type which is a 1-D real array
with time domain mapping information.
Whether the unique data types in HP VEE are
useful depends upon what type of data
manipulation the program requires. If time
domain type data is dominant HP VEE would
definitely be easier to work with.
2. Data type conversion is one area where HP
VEE really out-performs LabVIEW. Often
programmers need to add strings and numbers
together. In HP VEE strings and numbers are
simply wired to an (a+b) formula object and the
result is a string. The default number to string
conversion is typically sufficient. To do the same
task in LabVIEW a concatenate string object
must be used and the number must be converted
to a string first using a conversion object. While
this seems like a minor nuisance it illustrates a
fundamental difference between LabVIEW and
HP VEE. LabVIEW programmers need to worry
a lot more than HP VEE programmers about
data type. This is especially true when creating
VIs. In LabVIEW you nearly always end up
specifying a data type for all the input pins even
if the data type is of no significance. HP VEE
programmers rarely force a data type on input
pins.

3. Both LabVIEW and HP VEE have a very
useful composite data type, which is created by
combining other data types. A Cluster in
LabVIEW is identical to a Record in HP VEE.
LabVIEW and HP VEE both have tools for
creating and obtaining information from
Clusters/Records.

The method used in LabVIEW to extract data
from arrays and clusters is very different from
HP VEE. HP VEE programmers typically use a
formula box and type in what they want to
extract. LabVIEW programmers need to use
objects specific to the type of data they are
working with and the type of extraction they
want to perform. The array or cluster along with
constants needs to be wired to the extraction
object to extract the desired data. Basically, HP
VEE extractions are text based and LabVIEW
extractions are graphical. See figure 4 on the
following page.

A Test Engineer’s Evaluation of Graphical Programming
By Steve Mackin, Endgate Corporation

Page 7

VEE Model

LabVIEW Model

Figure 4

12 Objects and 13 Wires

6 Objects and 5 Wires

A Test Engineer’s Evaluation of Graphical Programming
By Steve Mackin, Endgate Corporation

Page 8

In addition to these major differences between
the two programs quite a number of more subtle
differences should be noted.

Program Flow (Loops, Case Structures)
The techniques used to implement Loops and
Case Structures in LabVIEW and HP VEE are
very different and best described graphically.

Looping Structures
In LabVIEW, surrounding objects to be iterated
on with a loop structure box creates loops. Input
and output pins on the box can be set to index
incoming data or collect outgoing data into an
array. Shift registers may also be added to the
loop to pass information from one iteration to the
next. HP VEE loops are defined using loop
objects and sequence pins. A collector object is
used to collect outgoing data into an array.
Looping structures in HP VEE are harder to
identify than looping structures in LabVIEW.
See figure 5.

VEE Model

LabVIEW Model

Figure 5

A Test Engineer’s Evaluation of Graphical Programming
By Steve Mackin, Endgate Corporation

Page 9

Case Structures
Like looping structures, Case Structures in
LabVIEW are created by surrounding objects
with a case structure box. Each case becomes a
separate window. Case Structures in HP VEE
are created using case objects and sequence pins.
A major disadvantage of the LabVIEW technique
is that only one case is visible at a time. Another
disadvantage is that the case logic must be
created graphically. See Figure 6 below.

VEE Model

LabVIEW Model

Figure 6

14 Objects 14 Lines/ Only Once Case Visible

8 Objects 8 Lines/All Cases Visible

A Test Engineer’s Evaluation of Graphical Programming
By Steve Mackin, Endgate Corporation

Page 10

User Interface Panel
In both LabVIEW and HP VEE a programmer
can create a user interface panel. To create a
user interface panel in LabVIEW the
programmer selects a control or display object
from a pop up menu while the user interface
panel is in focus (the top window). Once an
object is selected and placed on the panel an
object that represents the display or control is
created on the LabVIEW diagram where it is
wired into a program. To create a user
interface panel in

HP VEE, the programmer selects the object to
be placed on the user interface and chooses an
edit option to add the object to the panel. One
advantage of the HP VEE method is that user
interface view of controls and displays can be
seen and operated from the programming
window. There is no need to switch between
windows to control and input or view the results
of a program. This is illustrated in figure 7
below.

Subroutines (User Functions/VIs)
The main difference between HP VEE user
functions and LabVIEW VIs is the technique
used to call them and the control a programmer
has on the location and size of a pop-up display.

Calling User Functions/VIs
To call a LabVIEW VI it needs to be placed on
the diagram and wired with data (unless very
advanced features are used). HP VEE User
Functions can be placed on the diagram and
wired with data but they may be called from a
formula or sequencer object. This capability is
immensely powerful and a tremendous shortcut.
In figure 8 (following page) notice the way a
string concatenation is typed into the function
call.

Figure 7

Controls and Displays Visible

A Test Engineer’s Evaluation of Graphical Programming
By Steve Mackin, Endgate Corporation

Page 11

Pop-up Displays
Both LabVIEW and HP VEE functions can pop-
up user interface displays if the programmer
desires. Only HP VEE allows the programmer to
control the precise location and size of the panel.

Development Environment User Interface
Differences in the development environment
exist primarily in cursor modes (tools) and debug
probing features.

Cursor Modes
LabVIEW programmers are responsible for
selecting the correct cursor mode. LabVIEW
refers to cursor mode selection as tool selection.
The use of cursor tools is patterned after paint
programs. There are four basic tools:

1. Operating Tool – The mode the cursor must
be in to operate controls

2. Positioning Tool – The mode the cursor must
be in to select, move and resize certain objects.
This tool must also be used to select, move and
delete lines.

3. Labeling Tool – The mode the cursor must be
in to do any kind of ASCII input.

4. Wiring Tool – The mode the cursor must be in
to wire objects.

Toggling between these modes is usually done
using keyboard short cuts. The space bar toggles
between the Positioning tool and the Wiring Tool.
The tab key toggles through all four of these
modes. There are also several other tools for
debug and coloring but these tools must be
selected from a pop up menu. Programming
LabVIEW is like playing a piano. The
programmer needs to use both hands, interpret
what needs to be done by looking at the screen,
and select the right tool. The tool also needs to
be unselected when a task is complete or the
programmer will end up wiring lines to objects
he or she wanted to move or select.

Figure 8

A Test Engineer’s Evaluation of Graphical Programming
By Steve Mackin, Endgate Corporation

Page 12

HP VEE’s cursor mode is automatically selected
by HP VEE depending on where the cursor is
located. This is a great feature. For example if
the cursor is:

1. close to pins it becomes a wiring tool.

2. over an object it becomes a positioning tool.

3. over ASCII data it becomes a labeling tool.

4. on a line it becomes a probe

5. over nothing it becomes a scrolling tool.

This makes writing programs in HP VEE much
easier than LabVIEW. The programmer does
not have to think about acquiring tools, using
them, and then switching to other tools. It is like
working on a car with a magic hand that changes
into a wrench or screwdriver depending on
whether it is close to a nut or a screw.

To illustrate the difference this table compares
the number of mouse clicks, tab, and space key
hits required to create the Extraction Example.
Remember; before a majority of mouse clicks the
cursor must be exactly positioned.

Mouse Clicks
(Single and Double + Tab and Space Hits for LabVIEW)

Other
Key Hits

Total

LabVIEW 119 78 197
HP VEE 45 98 143

Execution and Debug
LabVIEW has historically had an edge over HP
VEE in execution speed. But with the latest
revision of HP VEE the gap is closing.
Determining execution speed would require
benchmark test cases and is beyond the scope of
this article. Before deciding which program to
use for an application where execution speed is
critical it would certainly be worthwhile to
benchmark critical functions with both
applications.

Both LabVIEW and HP VEE have classic debug
features. Breakpoints can be set on any object
and probes can be created to look at the data on
any line. There is a major difference between
LabVIEW and HP VEE probes. To create a
LabVIEW probe the program must be paused or
stopped and the probe tool must be used to select
a line. A new window then appears to display
data flowing on the line selected. The label of the
new window matches a label attached to the line
selected. Data only appears in the new window if
the program is running. The process for creating
HP VEE probes is similar. The program must be
paused or stopped and then a click on the line
creates a HP VEE probe. A window appears to
reveal the data that currently exists on the line.

The big difference between LabVIEW and HP
VEE is that HP VEE does not require that the
program be running in order to view probe
information. This means that probe locations
need not be preplanned. In LabVIEW with
numerous probe windows open and the program
running, screen space can be quickly used up
making line tag identification difficult. A HP
VEE programmer can very quickly probe every
line in a program. To make probes that display
data while the program is running alphanumeric
display objects may be added to the program
with no impact on the user interface.

A Test Engineer’s Evaluation of Graphical Programming
By Steve Mackin, Endgate Corporation

Page 13

Example Program Comparison

Introduction
The best way to compare these two programming
languages is to examine an identical program
written in both. The program shown comes with
LabVIEW 4.0. The program is a two-channel
oscilloscope simulation. This program contains
all the basic elements described above and does
not utilize advanced libraries or require
instruments.

The HP VEE model was written to duplicate the
functions of the LabVIEW model. It was not
written to duplicate the exact program logic of
the LabVIEW model. The functions of the
LabVIEW model are as follows:

1. Display square and sine wave functions with
noise.

2. Drive what functions to display using a slider.

3. Drive the X scale of the waveform chart using
a knob.

4. Drive the Y scale of the waveform chart using
a knob.

5. Simulate an oscilloscope trigger using
switches and knobs.

6. If trigger source is off roll the waveform
chart and disable slope and level buttons.

7. If trigger source is on simulate an
oscilloscope’s trigger mechanism.

8. Disable the slope, source, and level controls if
Channel A is selected

9. Set trigger source to external if Channel A is
selected

10. Set trigger level to zero if external trigger is
selected.

11. Provide a button to stop the program

12. Provide a button to pop up information about
the program.

User Interface Comparison
The size of buttons and graphs is of no
significance since they can be resized in either
program.

Differences

1. The tic increment of any HP VEE graph
cannot be set. The programmer can only set min
and max values for the axis. The increment is
chosen by HP VEE. Therefore, the HP VEE
model knobs have been labeled “Duration” and
“Span”. The LabVIEW knobs are misleading.
The knobs indicate that they control the
increment of the X and Y-axis. The knobs
actually control the min and max values for the
axis. The increment value for the axis is also
input into the display but it is only a suggestion,
LabVIEW chooses an increment that is
appropriate based on the size of the graph. If the
LabVIEW graph is resized the knobs no longer
control the increment.

2. The legend (Trace 1, Trace 2) cannot be
eliminated from the HP VEE waveform display
without eliminating scale information.

Another difference in the user interface is the
method used to disable the source, slope and
level inputs. All LabVIEW objects have an
attribute, which controls whether the object is
enabled or disabled. If the control is disabled it is
grayed out on the user interface. There is no
such feature in HP VEE. The method used to
enable or disable controls is to show or not show
them. For comparison, objects have been hidden
in the HP VEE program by using a blank pop-up
user function, which covers and disables control.
If necessary the pop-up panels could have been
covered with a grayed out bit map of the buttons.
This would precisely replicate the LabVIEW
feature.

Note: When Channel A is selected in the HP
VEE model all of the trigger buttons are hidden.

A Test Engineer’s Evaluation of Graphical Programming
By Steve Mackin, Endgate Corporation

Page 14

Figure 9

VEE User Interface Panel

LabVIEW User Interface Panel

A Test Engineer’s Evaluation of Graphical Programming
By Steve Mackin, Endgate Corporation

Page 15

Figure 10
LabVIEW User Interface with Source=Ext

VEE Model User Interface with Source=Ext

A Test Engineer’s Evaluation of Graphical Programming
By Steve Mackin, Endgate Corporation

Page 16

Program Comparison: LabVIEW Model

Explanation of LabVIEW Main Program
(figure 11)
The sequence frame (Labeled “A”) contains
attribute nodes for the trigger controls. The
purpose of this sequence frame is to enable the
switches if they were left disabled by the user
aborting the program. The While Loop (Labeled
“B”) contains most of the program logic and
controls. The Volt/Div control (Labeled “C”) is
wired to a case structure, which contains
constants that are built into a cluster and then
wired into the Y Range attribute of the waveform
display (Labeled “D”). The Time Base control
(Labeled “E”) is wired to a case structure that
controls the X Range attribute of the waveform
display. This case structure also sets up
frequency and time domain information for the
case structure above. The rest of the controls
(Select Channel, Level, and Slope) are wired into
the case structure labeled “F”. This case
structure is controlled by the Select Channel

control and passes data into a VI (see figure 12)
that generates the waveform data with trigger
simulation. The waveform data is then combined
with time domain information by a build cluster
object and routed to the waveform display. The
case structure labeled “M” is used to disable the
Slope and Level controls if the logic that is wired
into it is false. The sequence frames labeled “G”
and “H” are sequenced by a dummy data line.
They enable the source, slope, and level controls
and reset the stop switch once the While Loop is
terminated by the stop button labeled “I”. The
While Loop labeled “K” runs in parallel with
While Loop “B”. This While Loop continuously
checks to see if the More Information button
labeled “L” is pressed. If the More Information
button is pressed then the case structure inside
loop “B” pops up a panel showing information.
While Loop “K” is controlled by the same stop
button (Labeled “I”) as While Loop “B”. Using a
Local Variable labeled “stop” does this.

Figure 11

A Test Engineer’s Evaluation of Graphical Programming
By Steve Mackin, Endgate Corporation

Page 17

Figure 12 is the diagram for Channel A and/or
B (Demo).vi. Inputs to this routine are Source,
Select Channel, Frequency, and No. Points. The
outputs of this routine are Noise, Waveform 1
Out, Waveform 2 Out. The case structure in the
middle of the program is driven by the Select
Channel control. The case generates a sine
wave, a square wave, or both depending on
which channel is selected. The case also sets
source equal to False if the channel selected is
“A”. The trigger VI called is described in the
next figure (figure 13).

Figure 12

A Test Engineer’s Evaluation of Graphical Programming
By Steve Mackin, Endgate Corporation

Page 18

The trigger.vi simply rearranges the waveform
array if the Source is True (Source = Ch B).
Inputs to this routine are Waveform 1 in,
Waveform 2 in, Level, and Source. Outputs of
this routine are Waveform 1 out, and Waveform
2 out. If the source is true (Source = Ch B) then
the routine Slope.vi is called and the index
returned is used to extract a part of the
waveform.

Figure 13

A Test Engineer’s Evaluation of Graphical Programming
By Steve Mackin, Endgate Corporation

Page 19

The purpose of the slope.vi routine is to return
the index of an array based on the characteristic
of the array. Inputs to this routine are array,
level, and direction. The output of this routine
is index. For comparison purposes the HP VEE
function on the following page (figure 15)
duplicates the logic exactly.

Figure 14

A Test Engineer’s Evaluation of Graphical Programming
By Steve Mackin, Endgate Corporation

Page 20

Figure 15

A Test Engineer’s Evaluation of Graphical Programming
By Steve Mackin, Endgate Corporation

Page 20

Figure 16

A Test Engineer’s Evaluation of Graphical Programming
By Steve Mackin, Endgate Corporation

Page 23

Program Comparison: HP VEE Model
Explanation of HP VEE Main Program
The HP VEE model consists of three threads and
several labels used to create the user interface.
The threads can be described as three
independent programs that are all started when
the run button is hit. A thread can also be run
independently by hitting its Start button. The
thread containing the More Information (labeled
“A”) button functions exactly like While Loop “K”
in the LabVIEW model. The only function of the
thread labeled “B” is to stop the program when
the stop button is hit. The remaining thread
(labeled “C”) reads the controls, generates data,
hides controls (if required), and displays the data
using a waveform display. This thread contains
an On Cycle object so the thread is executed every
0.5 sec. This was done to replicate the 500-
millisecond wait in the LabVIEW model. The two
If Then/Else objects (labeled “D” and “E”) are used

to reset the Level and Source controls depending
on Source and Channel selection.

The object labeled Make Waves (figure 17)
generates the waveform data and scale
information depending on the control settings.
The object labeled “Hide Source Slope Level ?”
hides the trigger controls if channel A is selected.
The object labeled “Hide Slope Level ?” hides two
of the trigger controls if the source is set to
external. The Shift Register If Then/Else, and
Gate objects in the lower right hand corner simply
pass scale information to the Waveform display if
the scale information has changed since the last
iteration. This logic was added to eliminate the
flash that accompanies scale updates of HP VEE
waveform displays. The labels at the top of the
program are required in the programming
window because everything displayed on the user
interface panel must exist in the programming
window.

Figure 16

A Test Engineer’s Evaluation of Graphical Programming
By Steve Mackin, Endgate Corporation

Page 24

The Make Waves object (figure 17 on previous
page) is a user function that accepts inputs from
the controls and generates waveforms. HP VEE
function generators are used to create the
waveform data. The three inputs on the function
generators are frequency, phase, and time span.
The time span is based on the duration selected.
The frequency is constant and the phase is varied

by the Create Phase object to simulate a scope
trigger mechanism. The object labeled Create
Scales Record accepts Duration and Span as input
and returns a HP VEE scale record. The object
labeled Pass One or Two Curves accepts the two
waveforms and the Channel Selected and returns
one or two waveforms.

This object (Create Phase, figure 18) creates the
phase of the waveform based on the control settings.
The slope switch shifts the phase by 180 degrees. If
the source is off or channel 2 (“A”) is selected the
waveform needs to roll so a counter object is activated
and the output is used to roll the waveform.

Figure 18

A Test Engineer’s Evaluation of Graphical Programming
By Steve Mackin, Endgate Corporation

Page 25

This object simply creates a HP VEE scale record
based on control inputs.

Figure 19

A Test Engineer’s Evaluation of Graphical Programming
By Steve Mackin, Endgate Corporation

Page 26

This object (figure 20) is needed because all input
pins on a display must contain data. Depending on
which channel is selected this routine sends out both
waveforms or one waveform and two points. The two
points are taken from the waveform passed out. This
is done in case the waveform display is auto-scaled.
This routine is not required in LabVIEW because
LabVIEW displays accept arrays as input. Each
element of the array becomes a trace on the display.
Basically LabVIEW programmers can vary the
number of traces on a display without changing code
or writing routines like this.

Figure 20

A Test Engineer’s Evaluation of Graphical Programming
By Steve Mackin, Endgate Corporation

Page 27

Object and Line Count Comparison
To obtain a comparison of the effort required to
create the comparison program all of the objects and
lines were counted. This was accomplished by
opening up the program and counting the lines and
objects while they were being deleted. The number of
objects and lines required by LabVIEW is
substantially more than what was required by HP
VEE (see tables below).

HP VEE Routine Objects Lines
Main 39 30
Hide Slope Level? 4 6
Hide Source Slope Level? 4 6
Make Waves 16 32
Create Phase 10 17
Create Scales Record 19 26
Pass One or Two 6 16
Total 98 133

LabVIEW Routine Objects Lines
Main 118 109
Channel A and or B (Demo) 24 42
Trigger 12 20
Slope 21 44
Total 175 215

Conclusion
In this article I have attempted to make a fair
comparison between HP VEE and LabVIEW. As
I stated in the introduction, each has a number
of advantages. LabVIEW generally allows more
control of display and interface object attributes.
The programmer can set and query attributes. A
HP VEE programmer can only set certain
attributes and none of the attributes can be
queried. Most cosmetic HP VEE attributes are
set using pop-up menus and cannot be set
programmatically. LabVIEW local variables and
attribute nodes really break up data flow
programming. Tracking the data flow even in the
simple example above can be difficult.
Historically, LabVIEW has had faster execution
times. LabVIEW graphs accept arrays as inputs
and may be more suited to multiple curve
displays.

HP VEE is much easier to use than LabVIEW
because the programmer doesn’t have to wire as
much information and can utilize HP VEE’s
powerful auto line routing. The object and line
count comparison in the article above is a good
indication of how much faster HP VEE
programming is. HP VEE is easier to learn,
faster to use and more error-proof. The ability in
HP VEE to type in logic and formulas is an

enormous time saver and a very powerful tool.
LabVIEW also has a formula box but it has very
limited capabilities. Another time and irritation
saving feature of HP VEE is the amazing tool-
morphing capability. Once a programmer has
experienced this impressive device it is
frustrating to go back to swapping tools
manually. HP VEE maximizes readability by
allowing easy resizing of objects, keeping all case
structures visible and allowing placement of user
interface panels. One feature that is not
mentioned in the article is that HP VEE files are
stored in ASCII format. This can be a great
advantage for file transfers between operating
systems, editing, and even documentation.

As you have seen through a discussion of
features and a comparison of examples
LabVIEW and HP VEE offer very different
solutions to graphical programming. In making
a decision between two options it is easy to focus
on just one feature that seems important or one
deficiency that seems insurmountable.
Considerable time and expense will be invested
in the purchase of a graphical programming
language and, more importantly, in becoming an
expert programmer.

A Test Engineer’s Evaluation of Graphical Programming
By Steve Mackin, Endgate Corporation

Page 28

In considering the overall performance, ease of
use and capabilities of both programs I must
recommend HP VEE over LabVIEW. For the
purposes of this article HP VEE version 4.0 and
LabVIEW version 4.1 were compared. As new
versions are released we can expect
improvements in both products but I feel that the
underlying premise of HP VEE will continue to
be simple straightforward programming and the
expert HP VEE programmer will gain even
greater abilities to produce powerful software
with amazing speed.

Happy programming!

